

The ELI A Status and

The ELI ALPS Research Institute Status and Perspectives

Katalin Varjú Science Director

US – ELI Joint Workshop OSA, Washington DC – 25 September 2019

The ELI project A distributed RI of the ESFRI roadmap

Mission of ELI ALPS

To generate X-UV and X-ray fs and atto pulses, for temporal investigation at the attosecond scale of electron dynamics in atoms, molecules, plasmas and solids.

Scientific mission of ELI-ALPS

Visualizing structural ultrafast dynamics

Video from: F. Calegari et al. Science 346, 336 (2014)

- Higher reprate (few Hz-100 kHz) coincidence spectroscopy
- Higher XUV intensity (10⁹-10¹⁶ W/cm²) nonlinear processes
- XUV photon energy (10-few keV) strongly bound states

MTA

LTA

Experimental areas

Laser halls

Sen the

Clean room environment. ISO 7 & ISO 8

Temperature and relative humidity. 21°C (±0.5°C), 35±5% (tunable).

Vibration isolation VC-E (ASHRAE)

8/38

Scheme of ELI-ALPS

Unprecedent stability conditions for operation

Primary sources (laser beams) Secondary sources (attosecond pulses, particles, THz, MIR)

 \equiv

Experiments

High repetition rate (HR) laser @ 100 kHz

Single cycle (SYLOS) laser @ 1 kHz

High field (HF) laser @ 10 Hz

Mid-infrared (MIR) laser @ 100 kHz

Terahertz pump laser @ 50 Hz

Kühn, et al., Journal of Physics B, 50, 132002 (2017)

"Construction"

ELI ALPS Achievements

3 Laser systems commissioned

1st attosecond pulses

1st User paper from ELI-ALPS

PHYSICAL REVIEW LETTERS 122, 193602 (2019)

Quantum Optical Signatures in a Strong Laser Pulse after Interaction with Semiconductors

 N. Tsatrafyllis,¹ S. Kühn,² M. Dumergue,² P. Foldi,^{2,3} S. Kahaly,² E. Cormier,^{2,4} I. A. Gonoskov,⁵ B. Kiss,² K. Varju,^{2,6} S. Varro,^{2,7} and P. Tzallas^{1,2,*}
 ¹Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, PO Box 1527, GR-71110 Heraklion, Greece
 ²ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged, Hungary
 ³Department of Theoretical Physics, University of Szeged, Dom ter 9, 6720 Szeged, Hungary
 ⁴Univ Bordeaux, CNRS, CELIA, CEA, F-33405 Talence, France
 ⁵Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
 ⁶Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, 6720 Szeged, Hungary

(Received 28 September 2018; published 14 May 2019)

Laser parameters & status

	Parameters	Status	Operation / due date
MIR	100 kHz, <40 fs, 0.15 mJ, CEP<100 mrad	Operational	since Oct 2017
SYLOS alignment	10 Hz, <12 fs, >40 mJ, ~850 nm	Operational	since Jan 2019
SYLOS 2	1 kHz, <6.5 fs, >30 mJ, CEP<250 mrad	Operational	since May 2019
HR1	100 kHz, 40 fs, 1.5 mJ 100 kHz, <7fs, 0.8 mJ 100 kHz, <7 fs, 1 mJ, CEP<100 mrad	Operational Installation	since Dec 2017 since Aug 2019 by Q2 2020
HF PW	10 Hz, 10 J, compr. 17fs 10 Hz, <17 fs, 34 J	Operational Installation	since Sep 2019 by Q4 2020
HR2	100 kHz, <6 fs, 5 mJ, CEP<100 mrad	In development	by Q2 2020
THzP	1 kHz, 100 fs, 1 mJ & 50 Hz, <0.5 ps, 0.5 J	In development	by Q2 2020
MIR HE	1kHz, < 40 fs, 15 mJ	Conceptual	by Q4 2021
SYLOS 3	1 kHz, <6.5 fs, >105 mJ, CEP<250 mrad	Conceptual	by Q1 2022

SYLOS 2 performance Site Acceptance test (12-14 May, 2019)

Long term (>8h) operation **Energy stability: <1%rms** CEP stability: <200mrad

ei

Pulse duration: <6.4fs

1.0

Intensity [norm.] 9.0 7.0 8.0

0.0

Power [a.u.] 0.2 0.0 -25 0 25

Time [fs]

FASTLITE

Energy stability 0.7% rms

ei

14/38

CEP drift: 65mrad rms

HR lasers

• eli

Front end+ first amp (>7.5J, <17fs, 5Hz)

HF-2PW

Energy stability: 1.1% (specs: <1.5%)

16/38

Pointing stability: 7.7% of beam div. (specs: <10%)

Pulse duration: 17fs (Tr.Lim: 16.9fs)

HF-2PW P50 pump laser

Energy stability: 0.95% rms

Flashlamp-pumped lasers 500 W average power @ 532 nm

- Pseudo Active Mirror Disk Amplifier Module (PAMDAM)
- Switchable between 1 Hz and 10 Hz

The MIR Laser System Scientific Case Examples

1 kHz, > 10 mJ, < 2 cycles, 4 μm-12 μm

$$\mathbf{a}_{\mathrm{L}} = \left(\frac{2e^{2}\lambda_{0}^{2}I}{\pi m_{e}^{2}c^{5}}\right)^{2}$$

1-2-2-21/2

@
$$\lambda = 12 \ \mu m$$
 $a_L = 1 \ @ \sim 5.10^{15} \ W/cm^2$

The SYLOS System A collaborative ELI experiment proposed by T. Tajima & G. Mourou

separated and OU

Project: **Transmutation of** TransUranic Minor Actinide (Np, Am, Cm) **spent nuclear waste** via "cheaply" produced 14 MeV neutrons generated via DT or DD fusion reactions

Driven 100 keV deuteron acceleration by ultra-short, ultra high rep. rate lasers (SYLOS)

The HR GHHG beamline

Developers: CNR-IFN Milano / Padua, Italy

Harmonics in Ar at 100 kHz

21/38

Vibration isolation

RABBITT "reconstruction"

attosecond pulse train: 362 as

HR (100 kHz) GHHG Beamline I Gas Phase Experiments

- TOFs, Reaction Microscope
 Fast structural changes during
- proton transfer

.

- isomerization
- motion through conical intersections
- selective bond breaking by charge localization

24/38

HR (100kHz) GHHG beamline II Condensed Phase/Surface Science Experiments

NanoEsca end-station

Real and k-space mapping Band structure Spin diagnostics Magnetic imaging Plasmonics ARPES *with* Energy (few tens of meV), spatial (nm) & temporal (fs/asec) resolution

Including a time compensating XUV monochromator

Sub-fs dynamics in nanoplasmonic vortices

Developers: Scienta Omicron / Focus, Germany

Science 355, 1187 (2017)

SYLOS GHHG "compact" source Non-linear processes with XUV-pump-XUV-probe

Molecular coupled dynamics

Developer: FORTH, Crete, Greece

K. Ishikawa et al. Phys. Rev. A 72, 013407 (2005)

- ✓ Reaction Microscope for two-electron coincidences
- ✓ High XUV intensities (10¹⁵-10¹⁶ W/cm²)
- ✓ High rep rate (>1kHz)
- ✓ High temporal resolution (~100 asec)

A. Palacios et al. PNAS 111, 3973 (2014)

Collaboration with: Univ. Heidelberg, FORTH, Univ. Freiburg

The SYLOS GHHG "long" beamline Gas Phase Experiments

Developer: Lund University, Sweden

)))ei

attosecond

26/38

The SHHG beamlines

SYLOS driven

PW driven

Spectrum cut-off Output energy

70mJ (all orders 10<n< 20) 700 μJ (orders >20)

500eV - 1 keV

SHHG pulse duration

<100 asec for ROM < 200 asec for CWE

The first 1 KHz SHHG source !

Nonlinear THz Spectroscopy Facility

- THz pump—THz probe measurements
- Charge carrier dynamics
- Lattice anharmonicity
- THz nonlinearities
- Charge separation dynamics in biological molecules/complexes
- [spectrally resolved THz imaging]

Pump laser (cryo-cooled Amplight)

- Wavelength: 1.03 μm
- Pulse duration: 200 fs
- Pulse energy: ≥6 mJ
- Repetition rate: 1 kHz
- Jitter to an external clock signal: ≤100 fs

Expected readiness date: Oct 2019

THz source:

- •pulse energy: ≥10 µJ
- •spectral maximum: in the 0.3÷0.6 THz range
- •useful spectral content: 0.15÷1.5 THz
- •peak THz field at the sample: ≥200 kV/cm

High Energy THz Beamline

- Materials in extreme THz fields, phase transitions
- Molecule orientation & alignment
- Electron acceleration, manipulation, and bunch characterization
- Relativistic (~1 MeV) ultrashort electron source for time-resolved diffraction & imaging (microscopy)
- Proton post-acceleration

Pump laser: Amplitude Technologies

- •Wavelength: 1.03 μ m
- •Pulse duration: 500 fs
- •Pulse energy: ≥500 mJ
- •Repetition rate: 50 Hz
- •Synchronized short-pulse output: 0.8 μm | 100 fs | 1 mJ | 1 kHz

Development beamline Expected readiness date: Q3 2020

THz source:

- •pulse energy: ≥1 mJ
- •spectral maximum: in the 0.3÷0.6 THz range
- •useful spectral content: 0.15÷1.5 THz
- waveform: <2 cycles

Laser driven electron acceleration Examples of applications

ei

Ultrafast Electron Diffraction

He et al., Sci. Rep. 6, 36224 (2016)

Cole et al. Scientific Reports 5, 13244 ($201\overline{5}$)

Betatron radiation tomography

Experiments at long last... commissioning user experiments

Why would you want to do your expt at ELI?

Study of dynamics in liquid phase

gas

Goals of the experiment @ ELI-ALPS

- Measure attosecond photoemission delays:
- First attempts to observe and
 time-resolve intermolecular
 Coulombic decay in liquid water

The ETH Zurich teamHJ Wörner,A Jain, Th Gaumintz, A Schneider,Image P Zhang, C Perry, D Hammerland

Harmonic gen in bandgap materials The quantum-spectrometer

The quantum (photon) HHG spectrometer Principle: photon statistics

PI: Paris Tzallas (FORTH-IESL)

Conventional

Quantum

- "Creation" of one n-th order harmonic photon results from "annihilation" of n laser photons
- Statistics of the missing laser photons reveal the harmonic spectrum

ei

attosecond

33/38

Doped He droplet photoionization Electron VMI of doped He nanodroplets

Prof. Marcel Mudrich (Univ. of Aarhus) Prof. Frank Stienkemeier (Univ. of Freiburg)

Project:

"Study of photoionization of Helium dropplets of different size and, eventually with different dopant atoms (usually alkali atoms)"

- 1. Tunnel ionization
- Quiver motion of electrons inside the cluster → impact ionization
- 3. Coulomb explosion (VMI imaging)

Inner Shell x-ray Fluorescence

sub femtosecond excitation of core-hole dynamics by the recolliding electron

Ne K-shell and Kr L-shell + continuum

Auger, x-ray Fluorescence

PI: Gilad Marcus The Hebrew University at Jerusalem

60 fs, 3200nm, CEP stable

In house services Workshops & Laboratories

Mechanical and electrical workshops

Optical workshop for custom optics and coatings

Nanofabrication unit (EBL, FIB)

Radiobiology lab (zebrafish embryos)

Chemistry lab

ELI-ALPS: the users

Collaborative commissioning experiments

37/38

ETH Zürich, Switzerland

Principal Investigator & used equipment: Hans Jakob Wörner – HR1 Subject: Investigation of dynamics in liquids using attosecond pulses and high-harmonic generation in liquid phase

FORTH, Heraklion, Greece

Principal Investigator & used equipment: Paris Tzallas - MIR Subject: Investigation of photon statistics in crystal harmonics

CEA, Saclay, France

Principal Investigator & used equipment: Thierry Ruchon - MIR Subject: Investigation of gas high-order harmonic generation with the MIR laser

Hebrew University of Jerusalem, Israel

Principal Investigator & used equipment: Gilad Marcus – MIR Subject: Investigation of atomic inner-shell processes induced by intense, coherent Mid-IR radiation

6

4

FORTH, Heraklion, Greece

Principal Investigator & used equipment: Manolis Skantzakis - MIR Subject: MIR harmonic HBT experiment

University of Freiburg, Germany

Principal Investigator & used equipment: Frank Stienkemeier – MIR Subject: Investigation of ultrafast dynamics in helium droplets initiated by long-wavelength laser radiation

Université de Limoges, France

Principal Investigator & used equipment: Martin Maurel - MIR Subject: Single cycle mid-IR pulses through post compression in Kagome fiber

University of Freiburg, Germany

Principal Investigator & used equipment: Frank Stienkemeier – MIR Subject: Investigation of ultrafast dynamics in Argon droplets initiated by long-wavelength laser radiation

Prep & expt: Maintenance: 39 weeks 7 weeks

HR 1 (40 fs)

MIR laser

35 weeks 2 weeks

Open commissioning user call

Thank you for your attention & see you at ELI

