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• Validate simulations of the most 
extreme plasma phenomena

- Particle in Cell (PIC) simulations predict 
novel plasma accelerators, instabilities that 
lead to high-energy cosmic rays

• Understanding the conditions                  
of burning plasmas

- Test Density Functional Theory (DFT)                  
for alpha stopping and plasma heating             
to simulate nuclear burn waves

• Predict material behavior in extreme 
fusion plasma environments

- Knowledge of inter-atomic potential for 
Molecular Dynamics (MD) modeling of 
ultrafast behavior/design of new materials

X-ray lasers probe High Energy Density Plasmas to 
resolve questions on producing and diagnosing 
fusion plasmas and their environment

A high-energy, petawatt laser will produce 
plasmas in support of DOE missions



LCLS is essentially a 2-mile long atomic-scale camera 
with a femtosecond “shutter speed”

Photon energy      = 0.25 - 25 keV
X-ray pulse length = 0.2 - 200 fsec
Bandwidth             = 0.1 - 2 %
Repetition rate.     = 120 Hz (1 MHz)
Machine length.    ≈ 2 km

Siegfried H. Glenzer, HPL-7, 2019



LCLS: coherent, extreme brightness x-rays (>109

increase over prior sources) resolve collective 
plasma waves and structures

LCLS operates 24 hours/day
with 95% beam availability

as an open-access User Facility

LCLS self seeding

Siegfried H. Glenzer, HPL-7, 2019
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Matter in extreme conditions (MEC) instrument is 
supporting the science

d
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Be lens, 8 keV

10 µm

LCLS brings unique   
capabilities to study              
high-energy density plasmas

Combined X-ray 
beam and high-
power lasers in 
large target 
chamber

50 fs pulse

Ultra short pulsesFine spectral control

Long pulse 
and short 
pulse lasers

Siegfried H. Glenzer, HPL-7, 2019
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SLAC has delivered a world-leading program 
in HED science with X-ray lasers

Ultrafast 
heterogeneous 
melting

Data 
demonstrate 
sensitivity to 
material defects

M. Mo et al, Science (2018)

Melting below 
Tmelt in 
radiation-
damaged W

Data validate 
MD modeling

M. Mo et al, Science Adv. (2019) E. McBride et al, Nature Physics (2019)
S. Brown et al. Science Adv. (2019)

T. Kluge et al, PRX (2018)
Visualizing 
Nano-plasmas 
with Small Angle 
X-ray Scattering 
(SAXS)

Data validate 
PIC modeling

Beginning of 2020, LCLS-II will provide a major leap in performance both 
in high energy and multi-bunch trains greatly benefitting this research 

Silicon failure 
in extreme 
conditions

Data indicate 
phase 
transition below 
elastic limit

Siegfried H. Glenzer, HPL-7, 2019
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60 publications since 2014

Siegfried H. Glenzer, 2019



Studies of Matter in Extreme Conditions have received 
wide public attention

8SLAC HED Science 2018

Uliana Bazar, National Geographic,
October 2019

Siegfried H. Glenzer, HPL-7, 2019
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SLAC HED is bringing the HED community to MEC 
and LCLS

We are planning the next MEC user meeting, HPL-VII, September 2019 

HPL-IV, 2016

• >100 attendees
• 40% students/postdocs
• 15 Universities
• 5 National Labs
• 8 Company Sponsors
• Reports J. Syn. Rad., Pow. Diff.
• Present MEC experiments

HPL-VI, 2018

HPL-V, 2017

Siegfried H. Glenzer, HPL-7, 2019



Proposal to upgrade MEC for leadership in HEDS science 
with X-ray Free Electron Lasers

Project will position LCLS beyond any other XFEL in HEDS science capability.

FEH

New experimental hall

Notional concept for new facility

N

Nobel laureate Donna Strickland 
visiting MEC at LCLS

● Expanded facility east of LCLS for new 
lasers, multiple shielded target areas

● MEC Upgrade
● PW Laser 

● 1018 Pa light pressure

● Compression Laser: 
● 1012 Pa material pressure

● Strongly supported by HEDS community:  

● NAS study, High Power Laser and 
Brightest Light Initiative Workshop

● Ensure preeminence in the field of HED



The Laser specs for the MEC upgrade are driven 
by the scientific missions within DOE

● PW Laser: 150J, 150 fs, 1 µm, 10 Hz
● 1018 Pa light pressure, Bright ion beams, Collision-less shocks

● Compared to international competition
● 10x higher repetition rate
● 6x higher energy 
● 2x higher power 

● Compression Laser:   1 kJ, 20 ns, 0.35 µm, shot/minute
● 1012 Pa material pressure, Ablator physics, Unearthly 

materials

● Compared to international competition
● 10x higher energy at shot/minute
● 2x higher energy at 10 Hz

These lasers provide unparalleled capabilities to access and probe new states of matter 

Producing bright 
sources of ions, 
neutrons and 
magnetic fields for 
fusion material 
science 

Producing 
extreme material 
states through 
near isentropic 
compression
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• Develop ultra-bright, high-energy     
radiation sources for pump-probe 
experiments

- Radiation damage cascades

- Neutrons, Protons, heavy ions

• Develop high rep rate target delivery 
systems for high-intensity lasers

- Liquid jets/Cryogenic jets

• Machine learning techniques for analysis 
of large data sets

- We have begun delivering > 1 million     
shots in laser experiments

• High-repetition rate X-ray detectors

Opportunities for U.S. – ELI joint projects

Water 
Jet at 
UED

360 Hz 
data

4x40 µm2

Cryogenic 
H-Jet at 
Texas PW
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