

Institute of Physics of the Czech Academy of Sciences

High-Energy Beam Pillar

• World-leading and internationally excellent scientific results

ei Science Case @ ELI Beamlines

RP1 – Laser Development, B. Rus Lasers generating rep-rate ultrashort pulses & multi-petawatt peak powers

RP2 – Radiation Physics and Electron Acceleration, S. Bulanov Soft to hard x-rays, GeV electrons

RP3 – Ion Acceleration, D.Margarone250 MeV Ions Acceleration by lasers

RP4 – Applications in MBMS S, J. Andreasson & ELIBIO, J. Hajdu

RP5 – Plasma Physics, S. Weber Laser plasma and HED physics, astrophysics

RP6 – UHI Interactions, S. Weber High-field physics and theory

ei Laser Research Campus

ei Facility Layout - Priority Action

ei Sources overview

	8/2019	Technology	Design
L1	30mJ kHz 14fs	DPSSL, OPCPA pumped by thin disk	100 mJ kHz <20fs
L2	10J 10Hz ns	DPSSL, OPCPA	5J >20Hz <20fs
L3	16J 34fs 3.3Hz	DPSSL, Ti:Sa	>30J 10Hz <30fs
L4	1.5kJ 1/5min	OPCPA FE, mixed Nd:glass	1.5kJ 1/min 120 fs
HHG	5-120nm 30nJ		5-120nm, 1E10 ph
PXS	Comm. 4–30 keV		4–30 keV, 1E13 ph
LUIS	Installation	FEL Development	0.4 to 5 nm, 1E6 ph
Betatron	development		keV – MeV, 1E8 ph
ELIMAIA	commissioning		3/60-300MeV
ELBA	installation		10GeV

ei Our Big Laser Sources

wei L1 ALLEGRA laser user experiments since June 2019

Parameter	Demonstrated 04/2019	Expected 12/2019
Broadband output energy	30 mJ@ 1kHz	50 mJ @1 kHz
Compressed output (to E1 beam distribution)	25 mJ@ 1 kHz	>40 mJ @ 1 kHz
Pulse duration	14 fs	14 fs
Temporal contrast (pre-pulses to -5 ps)	>10 ⁻¹⁰	>10 ⁻¹¹

ALLEGRA operation hours July - Sept 2019

	TOTAL
DAYS	32
HOURS (with standby)	235
NET HOURS	184
STANDBY HOURS	51

Driving synchronized soft and hard-ray sources Enables electron and ion acceleration with kHz Surface harmonics at kHz can be tested ... proposals up to you!

ei L3 HALPS laser status

Item	6/2019
L3-HAPLS pump laser	100 J / 3.33 Hz 60 J / 3.33 Hz for experiments
Pulse compressor, pulse and beam diagnostics	Fully integrated with the laser, energy 0.5J, output pulse duration 34 fs
L3-HAPLS for TERESA experiments	1 st experimental run (100 mJ), 2 nd exp. campaign starting
Output beam shape	Round beam 84-mm-in-diam. for TERESA generated
Output pulse temporal contrast	Near 10^{11} @ 100 ps measured by Sequoia

Compressor output pulse temporal contrast Data from SPDP (Short Pulse Diagnostic Package) – Sequoia scan

ei L4 ATON laser status

			Power Amp PA1	Power Amp PA2	
			18 cm clear aperture	30 cm clear aperture	
Parameter	Measured value				
CPA pulse energy	1512 J significant headroom, higher energy possible			HEAR AND	
Bandwidth FWHM	~14 nm Gaussian fit compressibility 150 fs				
Long pulse energy	1180 J significant headroom, higher energy possible	1000			
Pulse width	<0.5-10 ns	6	Automated seque	nce 1/min PA2 out	put at 1 k
/ temporal shaping	125 ps with 60 ps rise time	1100-	··· ···		N= 10
	1 per minute (>1 hour sessions)	900-		and the second	-
Current shot rate	1 per 5 minutes for quality	5 800-			10 N
	beam	700-			1.008kJ Avg 18,33J StD
The second second		B 500-	~~~		1.028kJ Max
		-004 prate			965.2J Min
		-005 Gi			1.818% RMS
	Seksela	100-	Energy RMS sł	hot stability <2%	6.195% PTP
		0-	17.00.00.00.17.00.00.00.17.40.00.00.10.0		-00.00
		10:40:00.00	Time	0.00.00 18:20:00.00 18:40:00.00 19:00	:00.00
		<u></u>			

ei L4 10 PW optical compressor

ei L3 Beam Transport to P3

Main features:

Vibration stability Cleanliness

ei Experimental Areas

ei Initial User Operation @ ELI Beamlines

- First open call for user assisted commissioning and early use experiments
- Published February 15, 2019, closed June 20
- 20 experiments scheduled between June to Sept. 2019

		w24	w25	w26	w27	w28	w29	w30	w31	w32	w33	w34	w35	w36	w37	w38	w39
		user week 1	user week 2	user week 3	partial shutdown	shutdown	partial shutdown	user week 4	user week 5	user week 6	user week 7	user week 8	user week 9	user week 10 contingency	user week 11 contingency	user week 12 contingency	user week 13 contingency
		Jun 10 to 14	Jun 17 to 21	Jun 24 to 28	jul 1 to 5	jul 8 to 12	jul 15 to 19	jul 22 to 26	jul 29 to aug 2	Aug 5 to 9	Aug 12 to 16	Aug 19 to 23	Aug 26 to 30	Sept 2 to 6	Sept 9 to 14	Sept 16 to 20	Sept 23 to 27
ations	MAC	Luca Poletto (IT)	Filipe Maia (SE)				Tim Oelze (GE) Pamir Nag (CZ)**	Russel Minns (UK)/ Katharine Reid (UK) / Pamir Nag (CZ)	Russel Minns (UK) / Katharine Reid (UK)	Pamir Nag (CZ)**	Russel Minns (UK)/ Katharine Reid (UK)	Russel Minns (UK) / Katharine Reid (UK)	Russel Minns (UK) / Katharine Reid (UK)				
	ELIps			Stefan Zollenr (US)/ Luca Poletto (IT)	Stefan Zollenn (US)/ Luca Poletto (IT)*											Stefan Zollenr (US)/ Luca Poletto (IT)***	
	Optical spectroscopy	Carola Emminger (US)	Tamas Kreszthelyi (HU)	Adam Dubroka (CZ)				Jaroslav Zadny (CZ)	Blanka Vickova (CZ) prel.	Marina Tjunina (FI/CZ) prel.	in house	in house	in house	Oliver Herrfurth (GE)	in house	Michele Magnozzi (IT)	Jacinto Sa (SE/PL) prel.
E1 End-st	TREX (with continuous X-ray source)									-		Aleksandr Baranchikov (RU)		Gennady Kopitsa (RU) prel.	Anna Kulminskaya (RU) prel.		
	*Not a full week of exp	periments		-	Posponed in a	greement w	ith applicants						-				
	Users assisting with *Follow up experime	experiment pro	eparations (No lase	er)	Maths Karlsson (SE)	Gustavo Fuertes Vives (CZ)		100000000000000000000000000000000000000								14-4	

- 1200 hours supporting external experimenters
- "Users" from 7 countries (Germany, Finland, Czech Republic, Sweden, USA and Russia)
- Join us for user workshops
 - Science with coherent XUV sources, May 6 and 7, Workshop on optical spectroscopy, Sept 16 to 18,
 - Ultrafast X-ray science, Oct 24 and 25, ELIps workshop on pump-probe and VUV ellipsometry, Nov 11 and 12, 2019

ei E3 hall layout - HEDP

ei E4 Experimental hall: ELIMAIA

Acceleration, Collimation & Diagnostics

Ion Accelerator

Selection, Transport & Diagnostics Dosimetry & Sample Irradiation

D. Margarone et al., "ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications", Quantum Beam Sci. 2 (2018) 8

ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

quantum beam science

mdpi.com/journal/pubs

Volume 2 - Issue 2 June 2018

first acceleration experiments with L3-HAPLS

B deflection @ pix

ei Coolaboration

Collaboration between

ELI-Beamlines (FZU CAS, Czech Republic), BELLA Center (LBNL, CA, USA),

Keldysh Institute of Applied Mathematics (RAS, Moscow, Russia)

has resulted in the world highest charged particle energy (7.8 GeV) achieved with high power laserplasma interaction in the LWFA regime

 PHYSICAL REVIEW LETTERS 122, 084801 (2019)

 Testured in Physics

 Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide

 A. J. Gonsalves,^{1,*} K. Nakamura,¹ J. Daniels,¹ C. Benedetti,¹ C. Pieronek,^{1,2} T. C. H. de Raadt,¹ S. Steinke,¹ J. H. Bin,¹ S. S. Bulanov,¹ J. van Tilborg,¹ C. G. R. Geddes,¹ C. B. Schroeder,^{1,2} Cs. Tóth,¹ E. Esarey,¹ K. Swanson,^{1,2} L. Fan-Chiang,^{1,2} G. Bagdasarov,^{3,4} N. Bobrova,^{3,5} V. Gasilov,^{3,4} G. Kom⁶ P. Sasorov,^{3,6} and W. P. Leemans^{1,2,4} ¹University of California, Berkeley, California 94720, USA ³Keldysh Institute of Applied Mathematics RAS, Moscow 125047, Russia ⁴National Research Nuclear University MEPH (Moscow Tegineering Physics Institute), Moscow 115409, Russia ⁵Faculty of Nuclear Science and Physical Engineering, CTU in Prague, Brehova 7, Prague 1, Czech Republic ⁶Institute of Physics ASCR, v.vi. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic

Plasma channel's electron density profile (blue) formed by discharge inside a capillary (gray) with an 8nanosecond laser pulse heater (red, orange, and yellow). The plasma channel was used to guide femtoseconds-long "driver" laser pulses from the BELLA petawatt laser system, which generated plasma wake waves accelerating electrons to 8 GeV over the distance of 20 centimeters.

Layout of the BELLA LPA with laser heater for enhancing the capillary discharge waveguide

Electron beam energy-angle distribution

https://newscenter.lbl.gov/2019/02/25/laser-drill-sets-a-new-world-record-in-laser-driven-electron-acceleration/

ei User Calls Schedule

Call	Q1/2019	Q2	Q3	Q4	Q1/2020	Q2
E1 Commissioning						
E1 Peer Reviewed						
E3 Commissioning						
E4 Commissioning						

Note: Before ERIC establishment, calls shall be opened and administrated by IoP

ei ELI BL Staff

ei Facility 5-year Perspective

ELISus – core support for the R&D activities ELIBIO – Biolab facility, new technology, R&D activities HIFI – High-field science and computing capabilities ADONIS – Multiple-enhancements for parallel operation

ELI

a world class laser research infrastructure with high impact for society

